Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Small ; : e2400891, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639019

RESUMO

Capillary metal tubes have attracted considerable interest for flexible electronics, portable devices, trace sampling, and detection. Tailoring the microstructure and wettability inside the capillary tubes is of paramount importance, yet it presents great difficulty because of the spatial confinement. Here, the coupling effect is revealed between the fluidic and electric field induced by bubble motion in a confined space during anodic oxidation. By controlling the bubble regeneration and flow rate, uniform and superhydrophilic TiO2 nanotube arrays are developed throughout the inner surface of an ultrafine Ti tube with a diameter of 0.4 mm and length of 1000 mm, equivalent to an aspect ratio of 2500 that is the largest value being ever reported. The inner surface of a capillary tube is further coated with a polytetrafluoroethylene layer and explored as a sensing needle for liquid detection in terms of concentration and species. This study provides an innovative approach to tailor the microstructure and wettability in a confined space for functional capillary tubes.

2.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470740

RESUMO

The use of heterogeneous photocatalysis in biologically contaminated water purification processes still requires the development of materials active in visible light, preferably in the form of thin films. Herein, we report nanotube structures made of TiO2/Ag2O/Au0, TiO2/Ag2O/PtOx, TiO2/Cu2O/Au0, and TiO2/Cu2O/PtOx obtained via one-step anodic oxidation of the titanium-based alloys (Ti94Ag5Au1, Ti94Cu5Pt1, Ti94Cu5Au1, and Ti94Ag5Pt1) possessing high visible light activity in the inactivation process of methicillin-susceptible S. aureus and other pathogenic bacteria-E. coli, Clostridium sp., and K. oxytoca. In the samples made from Ti-based alloys, metal/metal oxide nanoparticles were formed, which were located on the surface and inside the walls of the NTs. The obtained results showed that oxygen species produced at the surface of irradiated photocatalysts and the presence of copper and silver species in the photoactive layers both contributed to the inactivation of bacteria. Photocatalytic inactivation of E. coli, S. aureus, and Clostridium sp. was confirmed via TEM imaging of bacterium cell destruction and the detection of CO2 as a result of bacteria cell mineralization for the most active sample. These results suggest that the membrane ruptures as a result of the attack of active oxygen species, and then, both the membrane and the contents are mineralized to CO2.

3.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470770

RESUMO

Conventional sandwich structure photoelectrochemical UV detectors cannot detect UV light below 300 nm due to UV filtering problems. In this work, we propose to place the electron collector inside the active material, thus avoiding the effect of electrodes on light absorption. We obtained a TiO2-nanotubes@Ti@quartz photoanode structure by precise treatment of a commercial Ti mesh by anodic oxidation. The structure can absorb any light in the near-UV band and has superior stability to other metal electrodes. The final encapsulated photoelectrochemical UV detectors exhibit good switching characteristics with a response time below 100 ms. The mechanism of the oxidation conditions on the photovoltaic performance of the device was investigated by the electrochemical impedance method, and we obtained the optimal synthesis conditions. Response tests under continuous spectroscopy confirm that the response range of the device is extended from 300-400 nm to 240-400 nm. This idea of a built-in collector is an effective way to extend the response range of a photoelectrochemical detector.

4.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541444

RESUMO

Titanium is the most used material for implant production. To increase its biocompatibility, continuous research on new coatings has been performed by the scientific community. The aim of the present paper is to prepare new coatings on the surfaces of the pure Ti Grade 2 and the Ti6Al4V alloy. Three types of coatings were achieved by applying anodization and chemical vapor deposition (CVD) methods: TiO2 nanotubes (TNTs) were formed by anodization, carbon nanotubes (CNTs) were obtained through a metal-catalyst-free CVD process, and a bilayer coating (TiO2 nanotubes/carbon nanostructures) was prepared via successive anodization and CVD processes. The morphology and structure of the newly developed coatings were characterized using SEM, EDX, AFM, XRD, and Raman spectroscopy. It was found that after anodization, the morphology of the TiO2 layer on pure Ti consisted of a "sponge-like" structure, nanotubes, and nano-rods, while the TNTs layer on the Ti alloy comprised mainly nanotubes. The bilayer coatings on both materials demonstrated different morphologies: the pure Ti metal was covered by a layer of nanotubular and nano-rod TiO2 structures, followed by a dense carbon layer decorated with carbon nanoflakes, and on the Ti alloy, first, a TNTs layer was formed, and then carbon nano-rods were deposited using the CVD method.

5.
Chem Asian J ; 19(7): e202400001, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38403839

RESUMO

Bacterial contamination of implant surfaces is one of the primary causes of their failure, and this threat has been further exacerbated due to the emergence of drug-resistant bacteria. Nanostructured mechanobactericidal surfaces that neutralize bacteria via biophysical forces instead of traditional biochemical routes have emerged as a potential remedy against this issue. Here, we report on the bactericidal activity of titania nanotubes (TNTs) prepared by anodization, a well-established and scalable method. We investigate the differences in bacterial behavior between three different topographies and demonstrate the applicability of this technique on complex three-dimensional (3D) geometries. It was found that the metabolic activity of bacteria on such surfaces was lower, indicative of disturbed intracellular processes. The differences in deformations of the cell wall of Gram-negative and positive bacteria were investigated from electron micrographs Finally, nanoindentation experiments show that the nanotubular topography was durable enough against forces typically experienced in daily life and had minimal deformation under forces exerted by bacteria. Our observations highlight the potential of the anodization technique for fabricating mechanobactericidal surfaces for implants, devices, surgical instruments, and other surfaces in a healthcare setting in a cheap, scalable way.


Assuntos
Nanoestruturas , Nanotubos , Nanoestruturas/química , Nanotubos/química , Titânio/química , Antibacterianos/farmacologia , Antibacterianos/química , Propriedades de Superfície
6.
Heliyon ; 10(2): e24247, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293466

RESUMO

In this research, the effect of anodization time on the length of the titanium oxide nanotube arrays (TNAs) and photovoltaic parameters of back-side illuminated dye-sensitized solar cells (DSSCs) were investigated. The TNAs were characterized using X-ray diffraction (X-ray) or (XRD), and scanning electron microscopy (SEM). Anodic TNAs having tube lengths from 7.9 to 20.17 µm were produced in ethylene glycol containing ammonium fluoride-NH4F by increasing the anodizing time from 20 min to 6 h. Based on I-V curves, the power conversion efficiency (PCE) of back-side illuminated dye sensitized solar cells (DSSCs) increased for TNAs grown for up to 120 min, but decreased afterward. Using electrochemical impedance spectroscopy (EIS), we understand that the resistance of the TNAs decreased from 94.82 Ω cm-2 for TNAs anodized for 20 min down to 50.43 Ω cm-2 for those TNAs anodized for 120 min, however, it increases for TNAs anodized for longer periods of time. Furthermore, the short circuit current density (Jsc) increased from 3.14 to 5.67 mA cm-2 during 2 h anodic oxidation for TNAs, and leading to enhanced efficiency of about 200 % (from 1.19 % to 2.45 %). We interpret this behaviour with the top surface morphology evolution of TNAs as a function of anodization time which is associated with the formation of top surface nanograss and bundling the tubes for specific durations.

7.
Heliyon ; 10(1): e23722, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205290

RESUMO

Titanium oxide nanopowder (TiO2 NPs) was synthesized via anodization in 0.7 M perchloric acid then annealed in nitrogen at 450 °C for 3 h to prepared the Titanium Oxide Nitrogen annealed nanoparticles (TiO2 NPs-N2) powder as catalytic support. Using a photodeposition process, gold was added with isopropanol as a sacrificial donor and H[AuCl4] acid, producing gold nanoparticles on nitrogen-annealed titanium oxide nanoparticles (Au-NPs on TiO2-NPs-N2). The mass loading of Au NPs was 2.86 × 10-4 (g/cm2). TEM images of Au NPs on TiO2-NPs-N2 suggest circular particles with a tendency to agglomerate. Cyclic voltammetry (CV) was used to investigate the electrocatalytic performance of the Au NPs/TiO2-NPs-N2 catalysts in ferrocyanide, KOH, and H2SO4, and the results were compared to those of a polycrystalline Au electrode that is readily accessible in the market. In KOH, H2SO4, and (2 M KOH + 0.1 M glycerol) solutions, the Au NPs/TiO2-NPs-N2 electrode displayed a startlingly high electrocatalytic performance. Using CV, the electrocatalytic oxygen reduction reaction (ORR) of Au NPs/TiO2-NPs-N2 and Au-NPs against glycerol oxidation in basic media was studied. The results indicated that Au NPs/TiO2-NPs-N2 is a promising support material for improving the electrocatalytic activity for acidic and basic oxidation. The electrode made of Au NPs/TiO2-NTs-N2 has steady electrocatalytic activity and may be reused repeatedly. TiO2 NPs and Au NPs/TiO2NPs-N2 showed satisfactory antibacterial activity against some human pathogenic bacteria using the disc diffusion method.

8.
ACS Appl Mater Interfaces ; 16(4): 4430-4438, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232230

RESUMO

Anodic titanium dioxide (TiO2) nanostructures, i.e., obtained by electrochemical anodization, have excellent control over the nanoscale morphology and have been extensively investigated in biomedical applications owing to their sub-100 nm nanoscale topography range and beneficial effects on biocompatibility and cell interactions. Herein, we obtain TiO2 nanopores (NPs) and nanotubes (NTs) with similar morphologies, namely, 15 nm diameter and 500 nm length, and investigate their characteristics and impact on stem cell adhesion. We show that the transition of TiO2 NPs to NTs occurs via a pore/wall splitting mechanism and the removal of the fluoride-rich layer. Furthermore, in contrast to the case of NPs, we observe increased cell adhesion and proliferation on nanotubes. The enhanced mesenchymal stem cell adhesion/proliferation seems to be related to a 3-fold increase in activated integrin clustering, as confirmed by immunogold labeling with ß1 integrin antibody on the nanostructured layers. Moreover, computations of the electric field and surface charge density show increased values at the inner and outer sharp edges of the top surfaces of the NTs, which in turn can influence cell adhesion by increasing the bridging interactions mediated by proteins and molecules in the environment. Collectively, our results indicate that the nanoscale surface architecture of the lateral spacing topography can greatly influence stem cell adhesion on substrates for biomedical applications.


Assuntos
Nanoporos , Nanotubos , Propriedades de Superfície , Nanotubos/química , Comunicação Celular , Adesão Celular , Titânio/química
9.
ACS Appl Mater Interfaces ; 16(1): 376-388, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131318

RESUMO

The aim of the experiment was to evaluate the biocompatibility of four 3D-printed biomaterials planned for use in the surgical treatment of finger amputees: Ti-6Al-4 V (Ti64), ZrO2-Al2O3 ceramic material (ATZ20), and osteoconductive (anodized Ti64) and antibacterial (Hydroxyapatite, HAp) coatings that adhere well to materials dedicated to finger bone implants. The work concerns the correlation of mechanical, microstructural, and biological properties of dedicated materials. Biological tests consisted of determining the overall cytotoxicity of the organism on the basis of in vivo tests carried out in accordance with the ISO 10993-6 and ISO 10993-11 standards. Clinical observations followed by diagnostic examinations, histopathological evaluation, and biochemical characterization showed no significant differences between control and tested groups of animals. The wound healed without complication, and no pathological effects were found. The wear test showed the fragility of the hydroxyapatite thin layer and the mechanical stability of the zirconia-based ceramic substrate. Electron microscopy observations revealed the layered structure of tested substrates and coatings.


Assuntos
Materiais Biocompatíveis , Próteses e Implantes , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Durapatita/farmacologia , Cerâmica/farmacologia , Titânio/farmacologia , Titânio/química , Ligas/farmacologia , Ligas/química , Propriedades de Superfície , Teste de Materiais
10.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063695

RESUMO

Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a recent paper, we proposed the use of sawtooth-shaped voltage pulses for Ti anodization, which controls the pivoting point of the balance between the two processes that compete to create nanotubes during a self-organization process: oxide etching and oxidation. Under these conditions, pulsed anodization clearly reveals the history of nanotube growth as recorded in the nanotube morphology. We show that by selecting the suitable electrolyte and electrical discharge settings, a nanoporous structure may be generated as a repeating pattern along the nanotube wall axis. We report the findings in terms of nanotube morphology, crystallinity, surface chemistry, photocatalytic activity, and surface hydrophilicity as they relate to the electrical parameters of electrochemical anodization. Aside from their fundamental relevance, our findings could lead to the development of a novel form of TiO2 nanotube array layer.

11.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139637

RESUMO

Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup.

12.
ACS Appl Mater Interfaces ; 15(48): 55232-55243, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38014813

RESUMO

Promoting osseointegration is an essential step in improving implant success rates. Lithium has gradually gained popularity for promoting alkaline phosphatase activity and osteogenic gene expression in osteoblasts. The incorporation of lithium into a titanium surface has been reported to change its surface charge, thereby enhancing its biocompatibility. In this study, we applied anodization as a novel approach to immobilizing Li on a titanium surface and evaluated the changes in its surface characteristics. The objective of this study was to determine the effect of Li treatment of titanium on typical proteins, such as albumin, laminin, and fibronectin, in terms of their adsorption level as well as on the attachment of osteoblast cells. Titanium disks were acid-etched by 66 wt % H2SO4 at 120 °C for 90 s and set as the control group. The etched samples were placed in contact with an anode, while a platinum bar served as the counter electrode. Both electrodes were mounted on a custom electrochemical cell filled with 1 M LiCl. The samples were anodized at constant voltages of 1, 3, and 9 V. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results showed no significant differences in the topography. However, the ζ potentials of the 3 V group were higher than those of the control group at a physiological pH of 7.4. Interestingly, the adsorption level of the extracellular matrix protein was mostly enhanced on the 3 V-anodized surface. The number of attached cells on the Li-anodized surfaces increased. The localization of vinculin at the tips of the stretching cytoplasmic projections was observed more frequently in the osteoblasts on the 3 V-anodized surface. Although the optimal concentration or voltage for Li application should be investigated further, this study suggests that anodization could be an effective method to immobilize lithium ions on a titanium surface and that modifying the surface charge characteristics enables a direct protein-to-material interaction with enhanced biological adhesion.


Assuntos
Lítio , Titânio , Adesão Celular , Lítio/farmacologia , Adsorção , Titânio/farmacologia , Titânio/metabolismo , Comunicação Celular , Osteoblastos , Íons/metabolismo , Propriedades de Superfície , Microscopia Eletrônica de Varredura
13.
Membranes (Basel) ; 13(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37887997

RESUMO

Microfluidic devices have gained subsequent attention due to their controlled manipulation of fluid for various biomedical applications. These devices can be used to study the behavior of fluid under several micrometer ranges within the channel. The major applications are the filtration of fluid, blood filtration and bio-medical analysis. For the filtration of water, as well as other liquids, the micro-filtration based microfluidic devices are considered as potential candidates to fulfill the desired conditions and requirements. The micro pore membrane can be designed and fabricated in such a way that it maximizes the removal of impurities from fluid. The low-cost micro-filtration method has been reported to provide clean fluid for biomedical applications and other purposes. In the work, anodic-aluminum-oxide-based membranes have been fabricated with different pore sizes ranging from 70 to 500 nm. A soft computing technique like fuzzy logic has been used to estimate the filtration parameters. Then, the finite-element-based analysis system software has been used to study the fluid flow through the double membrane. Then, filtration is performed by using a dual membrane and the clogging of the membrane has been studied after different filtration cycles using characterization like a scanning electron microscope. The filtration has been done to purify the contaminated fluid which has impurities like bacteria and protozoans. The membranes have been tested after each cycle to verify the results. The decrease in permeance with respect to the increase in the velocity of the fluid and the permeate volume per unit clearly depicts the removal of containments from the fluid after four and eight cycles of filtration. The results clearly show that the filtration efficiency can be improved by increasing the number of cycles and adding a dual membrane in the micro-fluidic device. The results show the potential of dual anodic aluminum oxide membranes for the effective filtration of fluids for biomedical applications, thereby offering a promising solution to address current challenges.

14.
Materials (Basel) ; 16(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687706

RESUMO

The purpose of this paper was to determine the effect of anodization on the in vitro proliferation and adhesion of immortalized human keratinocytes (HaCats) and mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) in Titanium Grade 23 (Ti6Al4V ELI) discs and to describe the surface topography, roughness, and composition of dental implants (body and collar) and abutments submitted to an area-specific anodization process. HaCat cells and BM-MSCs were seeded onto discs with three different surface treatments: machined, area-specific anodization for abutments, and area-specific anodization for implant collars. Cell proliferation was assessed using a resazurin-based fluorescent dye on days 1, 3, and 7, while cell adhesion was examined using scanning electron microscopy (SEM). Surface topography, roughness, and composition were evaluated for six implant bodies with an anodized rough surface, six anodized implant smooth collars, and six anodized prosthetic abutments. Both HaCats and BM-MSCs showed increased viability over time (p < 0.001) with no statistically significant differences among the different surfaces (p = 0.447 HaCats and p = 0.631 BM-MSCs). SEM analysis revealed an enhanced presence and adhesion of HaCat cells on the anodized surface for the implant collars and an increased adhesion of BM-MSCs on both the anodized and machined surface abutments. The topography characteristics of the treated implants and abutments varied depending on the specific implant region. Chemical analysis confirmed the presence of oxygen, calcium, phosphorus, and sodium on the anodized surfaces. The area-specific anodization process can be utilized to create variable topography, increase the specific surface area, and introduce oxygen, calcium, phosphorus, and sodium to dental implants and abutments. While BM-MSCs and HaCat cells showed similar adhesion and proliferation on anodized and machined surfaces, a positive interaction between anodized Ti6Al4V ELI surfaces and these two cell lines present in the peri-implant mucosa was observed. Due to the limitations of the present study, further research is necessary to confirm these findings.

15.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686187

RESUMO

In this work, an attempt was made to reveal and explain the influence of the process of formation of 2D nanostructures at the surface of an amorphous alloy (an alloy with the composition Co75Si15Fe5Cr4.5Al0.5 (in at.%) was used for this purpose) on the corrosion and magnetic properties of such an alloy. Two-dimensional nanostructures (nanocells of 100-150 nm in size, which were obtained by anodizing the initial sample in an ionic liquid) are essentially a pattern on the surface of the sample, and they cannot completely cover and block the surface from external effects. It was postulated that the presence of these nanostructures during corrosion and magnetic tests has no significant effect. However, a noticeable inhibition effect was observed during corrosion tests and a less noticeable (but still detectable) effect was observed during magnetic tests. The authors believe that the effect obtained, with a detailed study, can be used to increase the corrosion resistance and to improve the properties of traditional magnetic materials.


Assuntos
Líquidos Iônicos , Nanoestruturas , Corrosão , Ligas , Fenômenos Magnéticos
16.
ACS Appl Mater Interfaces ; 15(39): 45790-45798, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37726212

RESUMO

Utilizing nanostructures of Li-alloying anode materials (e.g., Si, Ge, Sn, etc.) has been proposed as a key strategy to improve the electrochemical performance. However, the main challenge lies in the costly and complex nanostructure synthesis processes. Notably, the nanostructure growth processes are mainly supported by Li-inactive templates, which later need to be removed, and the template removal process results in the destruction of the desired nanostructures. In this report, we demonstrated the use of a Li-active, self-organized TiO2 nanotube template to fabricate germanium (Ge)-based nanostructured anodes. This has been achieved as follows: first, TiO2 nanotubes are fabricated via electrochemical anodization of titanium foil. Then, the nanotubes are coated with a Ge film in the second step via electrodeposition. Besides the effective nanostructure growth using a Li-active template, the implemented electrochemical synthesis methods are cost-effective, accessible, and scalable. Furthermore, the electrochemical methods allow the fabrication of nanostructures with well-controlled structures, morphology, and compositions. Accordingly, a Ge-coated TiO2 nanotube (Ge@TiO2) nanocomposite anode has been successfully fabricated, and its electrochemical performance has been tested for Li-ion batteries. The study has shown the important roles of TiO2 nanotube arrays in improving the performance by providing strong mechanical support to buffer the volume expansion and offering a high surface area to enhance Ge-active mass loading. Moreover, the direct contact of the nanotubes with a Ti current collector facilitates one-dimensional (1D) electron transport and avoids the need of adding inactive binders or conductive additives.

17.
Materials (Basel) ; 16(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37763538

RESUMO

The presence of Ti3+ in the structure of TiO2 nanotube arrays (NTs) has been shown to enhance the photoelectrochemical (PEC) water-splitting performance of these NTs, leading to improved results compared to pristine anatase TiO2 NTs. To further improve the properties related to PEC performance, we successfully produced TiO2 NTs using a two-step electrochemical anodization technique, followed by annealing at a temperature of 450 °C. Subsequently, Mo2C was decorated onto the NTs by dip coating them with precursors at varying concentrations and times. The presence of anatase TiO2 and Ti3O5 phases within the TiO2 NTs was confirmed through X-ray diffraction (XRD) analysis. The TiO2 NTs that were decorated with Mo2C demonstrated a photocurrent density of approximately 1.4 mA cm-2, a value that is approximately five times greater than the photocurrent density exhibited by the bare TiO2 NTs, which was approximately 0.21 mA cm-2. The observed increase in photocurrent density can be ascribed to the incorporation of Mo2C as a cocatalyst, which significantly enhances the photocatalytic characteristics of the TiO2 NTs. The successful deposition of Mo2C onto the TiO2 NTs was further corroborated by the characterization techniques utilized. The utilization of field emission scanning electron microscopy (FESEM) allowed for the observation of Mo2C particles on the surface of TiO2 NTs. To validate the composition and optical characteristics of the decorated NTs, X-ray photoelectron spectroscopy (XPS) and UV absorbance analysis were performed. This study introduces a potentially effective method for developing efficient photoelectrodes based on TiO2 for environmentally sustainable hydrogen production through the use of photoelectrochemical water-splitting devices. The utilization of Mo2C as a cocatalyst on TiO2 NTs presents opportunities for the advancement of effective and environmentally friendly photoelectrochemical (PEC) systems.

18.
Chemosphere ; 341: 139968, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643649

RESUMO

Photoelectrochemical (PEC) water splitting by semiconductor photoanodes is limited by sluggish water oxidation kinetics coupled with serious charge recombinations. In this paper, an effective strategy of TiO2 nanorod/nanotube nanostructured interface reconstruction, oxygen vacancies and surface modification were employed for stability and efficient charge transport in the photoanodes. Successive anodization and hydrothermal routes were adopted for the TiO2 NR/NT photoanodes interface reconstruction, followed by Au nanoparticles/clusters (Au NP) loading and hydrogen treatment. This resulted in H-Au-TiO2 NR/NT photoanodes. A three-dimensional structure of TiO2 NR on TiO2 NT/Ti foil nanotubes achieved the highest photocurrent density (1.42 mA cm-2 at 0.3 V vs. Ag/AgCl). The optimal oxygen vacancies and Au NP loading on TiO2 NR/NT exhibited 1.62 mA cm-2 photocurrent density at 0.3 V vs. Ag/AgCl in H-Au-TiO2 NR/NT photoelectrode, which is eight times higher than the TiO2 NT/Ti foil. TRPL analyses confirm the hydrogen treatments to TiO2 exhibited the emission lifetime (46 ns) in the H-Au-TiO2 NR/NT photoanodes due to newly formed lower Ti3+-related trapped electron states and Au NP. The optimum H-Au (4)-TiO2 NR/NT photoanodes achieved 95% photoelectrochemical (PEC) bacterial inactivation and effective PEC water splitting with (278 and 135.4) µmol of hydrogen and oxygen generation, respectively. In this study, oxygen vacancies combined with gold particles and interface reconstruction provide an innovative way to design effective photoelectrodes.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ouro , Hidrogênio , Oxigênio
19.
Materials (Basel) ; 16(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629988

RESUMO

The formation of nanostructured anodic titanium oxide (ATO) layers was explored on pure titanium by conventional anodizing under two different operating conditions to form nanotube and nanopore morphologies. The ATO layers were successfully developed and showed optimal structural integrity after the annealing process conducted in the air atmosphere at 450 °C. The ATO nanopore film was thinner (1.2 +/- 0.3 µm) than the ATO nanotube layer (3.3 +/- 0.6 µm). Differences in internal pore diameter were also noticeable, i.e., 88 +/- 9 nm and 64 +/- 7 nm for ATO nanopore and nanotube morphology, respectively. The silver deposition on ATO was successfully carried out on both ATO morphologies by silver electrodeposition and Ag colloid deposition. The most homogeneous silver deposit was prepared by Ag electrodeposition on the ATO nanopores. Therefore, these samples were selected as potential surface-enhanced Raman spectroscopy (SERS) substrate, and evaluation using pyridine (aq.) as a testing analyte was conducted. The results revealed that the most intense SERS signal was registered for nanopore ATO/Ag substrate obtained by electrodeposition of silver on ATO by 2.5 min at 1 V from 0.05M AgNO3 (aq.) (analytical enhancement factor, AEF ~5.3 × 104) and 0.025 M AgNO3 (aq.) (AEF ~2.7 × 102). The current findings reveal a low-complexity and inexpensive synthesis of efficient SERS substrates, which allows modification of the substrate morphology by selecting the parameters of the synthesis process.

20.
Nanotechnology ; 34(46)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37567165

RESUMO

The nanoporous structures obtained by the anodization of stainless steel are functional materials with various potential applications. It has been reported that nanoporous structures can be prepared by the anodization of stainless steel in an electrolyte containing fluoride ions. However, under the reported anodization conditions, the control range of the interpore distance of resulting nanoporous structures was narrow. To expand the application fields of the nanoporous structures obtained by the anodization of stainless steel, it is an important challenge to determine the anodization conditions that can control the interpore distance of nanoporous structures over a wide range. In this study, we investigated the effects of the electrolyte composition on the anodization behavior of stainless steel and the interpore distance of the resulting nanoporous structure. As a result, we found that the maximum voltage for the stable anodization of stainless steel increases when a mixture of ethylene glycol and glycerol containing NH4F is used as the electrolyte. Since the interpore distance of nanoporous structures obtained by the anodization of stainless steel is proportional to the anodization voltage, as the voltage range over which stainless steel can be anodized increased, the range of interpore distances of the nanoporous structures obtained also increased. On the basis of these results, ordered nanoporous structures with a large interpore distance (100 nm), which could not be obtained under the previously reported anodization conditions, were fabricated by the anodization of a stainless steel substrate with a depression pattern formed by Ar ion milling using an alumina mask under optimized anodization conditions. The resulting ordered nanoporous structures with controlled interpore distances are expected to be used in various devices such as capacitors and photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...